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ABSTRACT
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and
adversarial actors, which challenges the validity of forecasts. We present a forecasting framework
ensuring valid uncertainty estimates regardless of how data evolves. Leveraging the concept of
Blackwell approachability from game theory, we introduce a forecasting framework that guarantees
calibrated uncertainties for outcomes in any compact space (e.g., classification or bounded regression).
We extend this framework to recalibrate existing forecasters, guaranteeing accurate uncertainties
without sacrificing predictive performance. We implement both general-purpose gradient-based
algorithms and algorithms optimized for popular special cases of our framework. Empirically, our
algorithms improve calibration and downstream decision-making for energy systems.

1 Introduction

Machine learning models are often used in settings where data changes unpredictably after deployment. For example,
in medical diagnosis, epidemiological trends can cause distribution shifts that change the prevalence of ailments in
a population. Furthermore, a model’s predictions can impact future observations through feedback loops–such as in
financial forecasting [13], adaptive experimentation [14], preventative medicine [2], and predictive policing [16]–where
the model’s deployment induces nonstationarity in future data. Even more challenging, in settings such as security,
regulation, and game playing, data may be chosen adversarially to invalidate predictions.
Accurate uncertainty estimates are crucial for informed decision-making in dynamic environments. This work addresses
the challenge of maintaining forecast reliability despite adversarial or unpredictable data shifts. Take for example,
an electrical grid operator tasked with using energy generation and load forecasts to ensure reliable energy supply.
Uncertainty estimates are needed to evaluate the risk of different management decisions, allowing the operator to guard
against unfavorable outcomes. Additionally, providing probabilistic forecasts as opposed to only suggesting decisions
allows the operator to incorporate domain knowledge into the decision process.
To address the need for uncertainty estimation with nonstationary data, we consider a probabilistic forecasting task
for an arbitrary (potentially adversarial) data stream. This raises the question: How can we argue for the validity
of probabilistic forecasts for events that may be unrelated to past observations, or even deterministically chosen to
invalidate predictions? One approach is to appeal to calibration, which says that in the long run, the observed frequency
of an event should match its probability under the forecasts [12, 20, 45]. In other words, in hindsight the data stream
should resemble samples drawn from the forecasted distributions.
In this work, we study the scope of calibration guarantees that can be provided for forecasts of (potentially) adversarial
data. We consider a stream of outcomes on any compact metric space, encapsulating both classification tasks and
regression for bounded outcomes. Building on a stream of work connecting calibration to Blackwell approachability
[9, 18, 1, 40], we model the forecasting task as a zero-sum game played between the Forecaster and Nature. We design
the payoff (i.e., “win condition”) of this game to measure the calibration and predictive performance of the forecasts.
This allows us to give a general theoretical procedure to enforce any form of calibration that meets mild regularity
conditions. This procedure and its accompanying calibration guarantees serve as a proof that most popular forms of
calibration can be enforced without any assumptions about how the data stream evolves, with miscalibration decaying
in time as O(1/

√
T ). However, implementing this procedure is in some cases computationally hard. Thus, we study
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Calibrated Probabilistic Forecasts for Arbitrary Sequences

particular forms of calibration which can be guaranteed by tractable algorithms, and give gradient-based algorithms that
offer greater generality at the cost of worse guarantees. This allows us to enforce new forms of calibration in online
settings, such as decision calibration [49] and distribution calibration [42]. Furthermore, we can combine multiple
notions of calibration, for example simultaneously enforcing moment-matching and quantile calibration.
Robustness to adversarial data is valuable since it alleviates the need to make unverifiable assumptions about the future.
However, most real-world data is not truly adversarial: it is unlikely that nature is conspiring to choose the weather to
invalidate weather forecasts. Many forecasters make assumptions that are approximately valid and, as a result, make
more accurate predictions. A good forecasting strategy should be able to benefit from this domain knowledge. Thus, we
also apply our methodology as a post-processing procedure to achieve no-regret recalibration for existing forecasters;
given a set of expert forecasters and a scoring rule, we construct forecasts that asymptotically match the score of the
best forecaster, while also guaranteeing calibration.
Our main contributions are:
1. We propose a unifying framework for calibration in online learning, describing how many forms of calibration can

be expressed as payoffs in a repeated game.
2. We provide finite-sample calibration guarantees via a theoretical forecasting procedure that applies to any form of

calibration fitting into our framework.
3. We introduce ORCA, a novel gradient-based algorithm to implement the forecasting procedure, and efficient

algorithms optimized for specific forms of calibration.
4. We perform two empirical studies applying ORCA to recalibrate forecasters on regression tasks, demonstrating its

ability to improve both calibration and downstream decisions.

2 Problem Setting

Consider a probabilistic forecasting task, where the goal of the Forecaster is to give a probability distribution for the
next outcome in a sequence (e.g., the weather tomorrow). At each time step t = 1, 2, . . . , Nature reveals features
xt ∈ X (e.g., today’s temperature and air pressure). Next, Forecaster chooses a forecast pt in ∆(Y), the space of
probability distributions over an outcome space Y . Finally, Nature reveals the outcome yt ∈ Y . The outcome space Y is
assumed to be a compact metric space, such as a finite set of labels in classification or a bounded interval in regression.
We make no assumptions about the feature space X .

Online Learning Forecaster has access to the history and the features when choosing the forecast pt =
Forecaster(ht−1, xt), where ht−1 represents the history of all data and forecasts through time t − 1. Nature then
observes the forecast before choosing the outcome yt = Nature(ht−1, xt, pt). We allow for the possibility that Nature
acts adversarially, choosing whichever outcome is least favorable for Forecaster. In this sense, the task can be viewed
as a zero-sum repeated game played between Forecaster and Nature. The generality of the online learning paradigm
means our algorithms and theoretical results apply for any sequence of features and outcomes (xt, yt) over X × Y . In
particular, our guarantees hold for nonstationary data generating processes arising due to distribution shifts, feedback
loops, time series, and adversarial actors.

Calibration A notion of calibration represents a property we would expect to observe if each outcome yt were
sampled independently from the forecast pt. For example, suppose yt ∈ {0, 1} is binary and pt ∈ [0, 1] is a forecasted
probability that yt = 1. In the batch setting, where {(xt, yt)}Tt=1 are i.i.d. random variables (e.g., a held-out test dataset),
binary distribution calibration says that P (yt = 1 | pt ≈ p) ≈ p for all forecasts p ∈ ∆(Y) that occur sufficiently often.
In the online setting, outcomes are an arbitrary sequence and not necessarily random variables, so the probabilistic
definition is not well-defined. Instead, we define calibration analogously via empirical frequencies

lim
T→∞

∑T
t=1 1 {yt = 1, pt ≈ p}∑T

t=1 1 {pt ≈ p}
≈ p, (1)

where the indicator variable 1 {E} is 1 if the event E occurs and 0 otherwise [45]. The indicator 1 {pt ≈ p} is
a continuous approximation to the function 1 {|pt − p| ≤ ϵ} for small ϵ (see Section 4 for discussion). In words,
Equation 1 says that when the forecast pt is close to any fixed value p, the fraction of times that yt = 1 approaches p.
Calibration requires that this holds for all p ∈ [0, 1] such that pt ≈ p with nonzero frequency in the limit of large T , i.e.,
lim infT→∞

1
T

∑T
t=1 1 {pt ≈ p} > 0.

Blackwell Approachability Blackwell’s Approachability Theorem gives sufficient conditions under which a player
in a repeated zero-sum game can control a vector-valued payoff, when averaged over the rounds of the game. In each
round, t = 1, 2, . . . , two players, Forecaster and Nature, sequentially choose actions at ∈ A and bt ∈ B, respectively,
yielding a vector-valued payoff π(at, bt) ∈ Rm. Forecaster’s goal is to drive the average payoff πT = 1

T

∑T
t=1 π(at, bt)
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towards a target set E ⊆ Rm, while Nature tries to prevent this. The distance between the average payoff and the target
set is defined as d(πT , E) := infπ∈E ∥πT − π∥. A set E is approachable if Forecaster can ensure that d(πT , E)→ 0 as
T →∞, regardless of Nature’s strategy. For our purposes, the target set will be the origin E0 = {0}. Blackwell [9]
showed that E0 is approachable if Forecaster can ensure the payoff lies in a halfspace defined by the average payoff,
regardless of Nature’s action:

inf
a∈A

sup
b∈B
⟨π(a, b), π⟩ ≤ 0, ∀π ∈ Rm. (2)

3 The Forecasting Game

In this section, we express popular forms of calibration as the average payoff in a zero-sum game played between
Forecaster and Nature. Forecaster’s actions are distributions p ∈ ∆(Y), and Nature’s actions are outcomes y ∈ Y . In
subsequent sections, we show how to achieve these notions of calibration from a unified theoretical (Section 4) and
algorithmic (Section 5) perspective.

Procedure 1 Probabilistic Forecasting

for t = 1, 2, . . . do
Nature reveals features xt ∈ X
Forecaster predicts a distribution pt ∈ ∆(Y)
Nature reveals an outcome yt ∈ Y
Forecaster receives payoff π(xt, pt, yt) ∈ H

end for

The payoff π(xt, pt, yt) reflects the error of the forecast pt for features xt and outcome yt, and takes values in an arbitrary
Hilbert spaceH (e.g., a scalar or a vector). The average payoff up to time T is denoted as πT = 1

T

∑T
t=1 π(xt, pt, yt).

We are interested in the inner product norm ∥πT ∥ =
√
⟨πT , πT ⟩H, which for vector-valued payoffs is the familiar

Euclidean norm.
Definition 3.1. The miscalibration of forecasts p1, p2, . . . , pT for features x1, x2, . . . , xT and outcomes y1, y2, . . . , yT
with respect to a payoff π is the norm of the average payoff, ∥πT ∥. A sequence of forecasts is calibrated if the
miscalibration vanishes, that is ∥πT ∥ → 0 as T →∞.

We now give concrete examples of how calibration can be encoded as a payoff to demonstrate the versatility of Procedure
1 as an abstraction for calibration.

Binary Calibration As a simple example, consider a binary label indicating whether it rains (y = 1) or not (y = 0).
Forecaster wants to ensure that on days she predicts rain with probability p, the observed frequency of rain is also p. We
use a vector payoff indexed by a discrete set of probabilities p ∈ [0, 1], with entries πp(xt, pt, yt) = 1 {pt ≈ p} (yt − p).
This induces the miscalibration measure ∥πT ∥2 =

∑
p

(np,T

T

)2
(fp,T − p)

2
, where np,T is the number of days pt ≈ p

and fp,T is the frequency of the event yt = 1 when pt ≈ p, up to day T . This closely resembles the Expected Calibration
Error [25], except using an L2 norm on the errors instead of an L1 norm.

Quantile Calibration In a regression setting, let pt be the predicted distribution for the daily high temperature yt ∈ R.
Quantile calibration requires that for any quantile q ∈ [0, 1] (e.g., the median), the proportion of days yt falls below
the q-quantile of pt is q (e.g., half the time). We use a vector payoff indexed by a discrete set of quantiles q, given by
πq(xt, pt, yt) = 1 {Fpt(yt) ≤ q} − q, where Fpt is the cdf of pt. The induced miscalibration measure, known as the
Quantile Calibration Error [32], is ∥πT ∥2 =

∑
q (fq,T − q)

2
, where fq,T is the frequency of the event Fpt(yt) ≤ q up

to day T .

Moment Matching Beyond binary and quantile calibration, different notions of faithfulness are relevant depending
on the intended use or interpretation of the forecast. For example, if temperature forecasts are used to predict the mean
or variability of the temperature over a period, it is crucial for the averaged moments of the forecasts to match those of
the data. This can be measured using the payoff πk(xt, pt, yt) = Ey∼pt [y

k]− ykt , indexed by moments k ∈ {1, 2}. The
induced miscalibration metric ∥πT ∥2 measures the squared error in the forecasted moments. We can match additional
moments of the forecasts and data with k > 2, eventually requiring that the marginal distributions match exactly when
k goes to∞.

Decision Calibration Forecasts directly influence decision-making in areas such as adaptive experimental design
[15], model predictive control [21], and model-based reinforcement learning [34]. In these scenarios, decision-
makers must trust that forecasts accurately reflect the utility of each available action a ∈ A. For instance, to

3



Calibrated Probabilistic Forecasts for Arbitrary Sequences

evaluate whether forecasts systematically undervalue or overvalue any action, we can use the payoff πa(xt, pt, yt) =
Ey∼ptu(a, y, xt)− u(a, yt, xt), indexed by actions a ∈ A, where u(a, y, x) is the utility of action a with outcome y in
context x. A decision-maker should also be concerned if she experiences swap regret [10], wherein when selecting
optimal actions according to the forecasts, she could increase her utility by swapping all occurrences of some action a
with another action a′. This possibility can be measured using the payoff indexed by pairs of actions (a, a′), given by
πa,a′(xt, pt, yt) = 1 {a′ = δ(pt, xt)} (Ey∼pt

[u(a, y, xt)]− u(a, yt, xt)), where δ(pt, xt) is the Bayes optimal action
when y is distributed according to pt with context xt. By controlling these notions of calibration, Forecaster can
accurately evaluate the average utility of each action and make decisions with vanishing swap regret.

A General Recipe The above payoffs have a shared structure, which can be abstracted into a general payoff function
of the form π(x, p, y) = c(x, p) ⊗ (Ey′∼p [w(y′)]− w(y)), where c and w are vector-valued functions and ⊗ is the
outer product. Here, w is a “witness function” specifying the quantities that should match on average between the
forecasts and outcomes, and c is a “context function” specifying the conditioning events under which the quantities
should match. Under weak conditions (see Appendix A), calibration can be achieved online for any payoff of this form.

4 Winning the Forecasting Game with Provable Calibration
In the previous section, we described how calibration can be expressed using payoff functions. In this section, we
use this framework to describe a general forecasting strategy that guarantees miscalibration decreases as O(1/

√
T ).

Furthermore, we provide a unified approach to enforce arbitrarily many forms of miscalibration simultaneously. Our
strategy includes solving an optimization problem which is computationally hard for some notions of calibration. In
Section 5, we propose an inexact but tractable approach using gradient-based optimization.
Our work builds on a recent stream of work that leverages Blackwell approachability and related fixed-point theorems
to study calibration in online learning [40, 45, 1, 33, 26, 37]. Our primary theoretical contributions are (1) more general
conditions under which calibration can be achieved, allowing for arbitrary compact outcome spaces and nonconvex
calibration metrics, and (2) a framework to simultaneously achieve multiple measures of calibration and performance
with a unified optimization procedure. These two contributions are roughly organized into Sections 4.1 and 4.2,
respectively. Proofs for all results in this section can be found in Appendix A.

4.1 An Existence Result for Online Calibration

Our main result follows from two observations, which hold under mild conditions given in Appendix A. The first
observation is a simple argument that bounds miscalibration in terms of the inner product between the current and
average payoff.
Proposition 4.1. If the payoff is bounded (Condition 1), then

∥πT ∥2 ≤
B

T
+

2

T

T∑
t=1

⟨πt−1, π(xt, pt, yt)⟩ . (3)

Proposition 4.1 implies that if we can ensure the inner product in Equation 3 is nonpositive, then miscalibration will
decrease as ∥πT ∥2 ≤ B

T . The second observation guarantees that this inner product can be made nonpositive, regardless
of Nature’s play.
Proposition 4.2. If the payoff is consistent (Condition 2) and continuous (Condition 3), then for all π ∈ H and x ∈ X ,
there exists a forecast p ∈ ∆(Y) such that

max
y∈Y

⟨π, π(x, p, y)⟩ ≤ 0. (4)

Proposition 4.2 is proven by using continuity to invoke the Ky Fan minimax inequality, and consistency to ensure
that the resulting bound is nonpositive. Together, these results suggest a forecasting strategy which we formalize in
Algorithm 1: play forecasts satisfying the halfspace condition of Equation 4, making the second term of Equation 3
nonpositive, and guaranteeing that ∥πT ∥2 ≤ B

T .
Identifying the specific forecast that satisfies the halfspace inequality Equation 4 can be difficult. For now, we assume
access to an oracle HalfSpaceOracle(π, x) that returns a forecast p satisfying Equation 4. This oracle is tasked with
solving the following minimax optimization problem over p:

min
p∈∆(Y)

max
y∈Y

⟨π(xt, p, y), πt⟩ , (5)

whose optimal solution p∗ is guaranteed by Proposition 4.2 to achieve ⟨π(xt, p∗, yt), πt⟩ ≤ 0. We defer the implemen-
tation of the oracle to Section 5.

4
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Theorem 4.3. If the payoff satisfies Conditions 1-3, then Algorithm 1 has miscalibration bounded by ∥πT ∥2H ≤ B/T
for any sequence {(xt, yt)}∞t=1.

Theorem 4.3 follows directly from Propositions 4.1 and 4.2, and gives a finite-sample calibration guarantee. Importantly,
we make no convexity assumptions about the payoff, and allow for payoffs in a Hilbert space, which is useful for infinite
dimensional payoffs that arise in regression. Thus, this generalizes existing results that require discrete outcomes and a
bilinear payoff [e.g., 45, 29]. In conclusion, we can achieve general notions of calibration for nonstationary data caused
by feedback loops, distribution shifts, time series, and adversarial environments.

Algorithm 1 Blackwell Forecasting

Require: Payoff π, HalfSpaceOracle
π0 ← 0H // Initialize avg payoff as zero
for t = 1, 2, . . . do

Nature reveals features xt ∈ X
Query HalfSpaceOracle(πt−1, xt) for a distribution pt that satisfies the inequality maxy∈Y ⟨πt−1, π(xt, pt, y)⟩ ≤
0
Announce forecast pt, observe outcome yt, and receive payoff π(xt, pt, yt)
πt ← t−1

t πt +
1
tπ(xt, pt, yt) // Update avg payoff

end for

4.2 Multi-Objective and No-Regret Recalibration

Robustness to adversarial data allows us to avoid making assumptions about the data generating process. However,
in practice most forecasting tasks are not truly adversarial; Nature is most likely not conspiring for the weather to
contradict weather forecasts. In this section, we describe how to apply Algorithm 1 as a post-processing step for another
forecaster. This allows us to take advantage of the inductive biases and valid assumptions of other forecasters, while
maintaining guarantees if those assumptions fail. Our work extends recalibration techniques from the offline setting
[e.g., 32, 35] to nonstationary data. A recent stream of work on “calibeating” studies recalibration in the online setting
[19], and perhaps most relevant to our work is Lee et al. [33]. The most significant differences between Lee et al. [33]
and our work are that we give deterministic forecasts and do not require discretization.
Specifically, our goal is to guarantee calibration while simultaneously achieving loss comparable to known expert
forecasters. We begin by defining a standard notion of regret. Let ℓ(p, y) be a bounded and continuous real-valued
proper scoring rule, where smaller values indicate a better forecast. We are given k expert forecasters, whose forecasts
at each step are provided as features x = (x1, . . . , xk). Here, xi ∈ ∆(Y) is a distribution representing the forecast
made by expert i. The regret with respect to the best performing expert is given by

RT :=
1

T

T∑
t=1

ℓ(pt, yt)− min
1≤i≤k

1

T

T∑
t=1

ℓ(xi,t, yt). (6)

We can bound this regret term in the framework of Blackwell approachability via the k-dimensional payoff whose ith
entry is the excess loss relative to the ith expert, πREG

i (x, p, y) = ℓ(p, y)− ℓ(xi, y). The norm of the average payoff
then satisfies ∥∥πREG(x, p, y)

∥∥2
2
≥
∥∥πREG(x, p, y)

∥∥2
∞ = R2

T (7)
Thus, we can treat the regret as simply another payoff that we optimize using Algorithm 1. See Appendix A.1 for
the details of this comparison. To achieve calibration with a no-regret guarantee, we note that Forecaster can control
multiple payoffs simultaneously with the same O(1/

√
T ) time dependency.

Proposition 4.4. Let π(1), . . . , π(n) be n payoff functions taking values in Hilbert spaces H1, . . . ,Hn, respectively.
Suppose each payoff π(i) satisfies the Conditions 1-3 with bound Bi. Applying Algorithm 1 to the direct sum payoff
π(1) ⊕ · · · ⊕ π(n) ensures

∑n
i=1 ∥π

(i)
T ∥2Hi

≤ 1
T

∑n
i=1 Bi, and using the normalized payoff π(1)

B1
⊕ · · · ⊕ π(n)

Bn
ensures

∥π(i)
T ∥2Hi

≤ nBi

T for 1 ≤ i ≤ n.

Thus, we can match the performance — up to an O(1/
√
T ) gap — of any expert forecaster, while guaranteeing multiple

forms of calibration.

5 Algorithms
In the previous section, we gave calibration guarantees for a forecasting strategy that assumed access to an oracle
solution to a minimax optimization problem. In this section we describe algorithms to implement this oracle. Since this
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optimization problem is PPAD-hard in some cases [28], an efficient algorithm must compromise on either generality or
the strength of the guarantees. We consider both approaches, first giving a general gradient-based optimization strategy
without strong guarantees, and then providing tractable oracles for specialized payoffs.

5.1 Gradient-Based Blackwell Forecasting

Tractable half-space oracles are attractive in that they guarantee calibration. However, there are two important
outstanding limitations: first, some payoff functions do not admit tractable oracles, as indicated by computational
hardness results [28]. Second, it is not easy to combine tractable oracles for individual payoffs into oracles for multiple
payoffs; given two payoff functions π1 and π2 each with a tractable oracle, it is not clear how to use the oracles
to construct a tractable oracle for π1 ⊕ π2. To mitigate these issues, we introduce Online Regression Calibration
against an Adversary (ORCA), a gradient-based approach for solving the oracle minimax problem. ORCA iteratively
optimizes an upper bound on the miscalibration (i.e., the minimax inner product). If that upper bound drops below zero,
we can control miscalibration. If the upper bound remains positive because we fail to identify a global optimum of
the nonconvex optimization problem (although we know a solution exists) we play the best identified forecast, with
miscalibration limited by the identified upper bound. Thus, while ORCA does not guarantee calibration, we know
before observing the outcome whether it is possible for the miscalibration to worsen. Additionally, we can easily
combine multiple payoffs by concatenating them, without needing to adjust the optimization algorithm.

Parameterizing the Forecasts We introduce two parameterized families of distributions over the outcome space:
one for the forecast distributions and one for the adversarial outcome distributions. The forecast family is given by
P = {pθ : θ ∈ Θ}, and should be flexible enough to approximate any distribution over the outcomes to guarantee the
existence of a solution to the half-space oracle problem. For example P could be a neural network that represents the
PDF or CDF of the forecast, or a parametric family of mixture distributions (e.g., θ encodes the means, variances, and
mixture weights of a Gaussian mixture). Note that the parameters θ describe a distribution pθ over the outcome space,
not model weights mapping inputs to a distribution.
To enable efficient gradient-based optimization, we give Nature the option to play a randomized outcome, represented
by a distribution q ∈ ∆(Y). Since Nature plays last in each round, this does not affect the optimal solution to the
minimax problem. The adversary family Q = {qϕ =

∑K
k=1 ϕkqk : ϕ ∈ RK , ϕ ≥ 0, ϕ⊤1 = 1} is chosen to be a

mixture distribution with fixed components (q1, . . . , qK) for qk ∈ ∆(Y), and flexible mixture weights (ϕ1, . . . , ϕK).
Similarly, the adversary family should be flexible enough to approximate any distribution over the outcome space, to
ensure the oracle does not underestimate the worst-case miscalibration.

Gradient-Based Optimization Each single forecast requires solving an optimization problem over the forecast
family. However, note that this optimization is over a relatively small space—on the order of the 10’s or 100’s of
parameters composing θ. Using the above parameterizations, we write the half-space oracle task (Equation 5) as

min
p∈∆(Y)

max
y∈Y

⟨πt−1, π(xt, p, y)⟩ = min
p∈∆(Y)

max
q∈∆(Y)

E
y∼q

[⟨πt−1, π(xt, p, y)⟩] (8)

≈ min
θ∈Θ

max
ϕ∈∆k−1

∑K
k=1ϕk E

y∼qk
[⟨πt−1, π(xt, pθ, y)⟩] (9)

where ∆k−1 = {ϕ ∈ Rk : ϕ ≥ 0, ϕ⊤1 = 1} is the probability simplex. The first equality holds because the worst-case
outcome is equivalent to the worst-case outcome distribution, due to the linearity of the expectation. The second
(approximate) equality replaces the full space of distributions with the parameterized families we will optimize over.
When the components qk are Dirac measures (making qϕ a Categorical distribution), we can compute the expectation
analytically. In general, we can also approximate the expectation using Monte Carlo simulation. Now, the inner
maximization problem is a linear program (LP) in the mixture weights ϕ, which we can solve in O(K3.5) time [4].
When solving the outer minimization problem, we differentiate through the LP solution using differentiable convex
optimization solvers [3]. We now have a minimization task over θ with a differentiable objective, which we can optimize
using standard gradient-based optimizers such as Adam [30]. The full forecasting strategy for ORCA is summarized in
Algorithm 2.

5.2 Algorithms for Specialized Notions of Calibration

Algorithm 2 is easy to implement, works with any differentiable payoff, supports no-regret recalibration, and works well
in practice. For many definitions of calibration, we can also design specific half-space oracles that provably achieve the
desired notion of calibration, but they need to be handcrafted for each calibration type (see Appendix C).

Theorem 5.1. There exist half-space oracles for quantile calibration, distribution calibration, moment-based calibration,
and decision calibration, which provably solve the half-space problem.

6
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Algorithm 2 ORCA: Gradient-Based Blackwell Forecasting

Require: Payoff π, Forecast set P , Adversary set Q
π0 ← 0H // Initialize avg payoff as zero
for t = 1, 2, . . . do

Nature reveals features xt ∈ X
Initialize pθt ∈ P
while not converged do

Compute ℓt(θt;Q, π), the worst-case miscalibration for pθt from the LP solver. // Equation 9
Update θt using gradient-based optimization to minimize ℓt(θt;Q)

end while
Announce forecast pθt , observe outcome yt, and receive payoff π(xt, pt, yt)
πt ← t−1

t πt +
1
tπ(xt, pθt , yt) // Update avg payoff

end for

The time and space complexity for each algorithm is typically O(1/ϵk) for some k > 0 (e.g., the number of moments);
see Appendix C. In simple settings (binary calibration and adaptive conformal inference), we provide O(log(1/ϵk))
algorithms. In general, the exponential dependence on k is inevitable, as even for k-class classification, the optimization
problem is PPAD-hard [28].

Recalibration Section 4.2 provides a general way to enforce low-regret relative to baseline forecasters. Here, we
guarantee convergence at the cost of added complexity.
Suppose that a baseline forecaster outputs uncalibrated forecasts xt ∈ ∆(Y); we construct a recalibrator that outputs
pt with low regret relative to xt. We form a partition C of ∆(Y) and associate each cell c ∈ C with an instance Ac of
Algorithm 1. When we observe xt, we produce the forecast pt by invoking Ac for the cell containing xt, then observe
yt. We then update Ac based on the data (xt, pt, yt).

Theorem 5.2. Suppose Algorithm 1 approaches a ball of radius ϵ > 0 centered at the origin and has vanishing external
regret relative any fixed forecast p as measured by a bounded proper loss ℓ with Lipschitz constant B > 0. Then the
above construction yields outputs pt whose regret relative to xt in terms of ℓ is bounded by 2Bϵ + O(1/

√
T ). The

calibration error of the pt is bounded by ϵ+O(1/
√
T ).

The full construction and the proof of the theorem can be found in Appendix D.

6 Experiments

We perform two experiments to evaluate the ability of ORCA to recalibrate forecasts on regression tasks. In the first
experiment, we test whether ORCA can improve calibration without worsening predictive performance for four different
online learning models on two regression tasks. In the second experiment, we simulate a decision task for a wind farm
operator to test whether ORCA improves downstream decision-making.

6.1 Recalibrating Online Learners

Expert Forecasters We recalibrate forecasts from four online learning algorithms implemented in the River online
learning library [36], namely stochastic gradient trees [24], a neural network, Hoeffding adaptive trees [7], and a naive
forecaster that predicts the distribution of historical outcomes.

ORCA Implementation We apply ORCA to recalibrate the predictions of each expert forecaster. We parameterize
the action spaces of Forecaster and Nature for the minimax optimization task both as piecewise constant densities
over 50 evenly-spaced subsets of the outcome space. We find that using similar parametrizations for Forecaster and
Nature is important for preventing them from leveraging limitations in each other’s expressive capacity. For the payoff
function, we use a combined payoff enforcing quantile calibration, no-regret for the Continuous Ranked Probability
Score (CRPS) and Mean Squared Error (MSE) metrics, and moment-matching for the first two moments. We perform
400 update steps with the Adam optimizer [30] to solve the minimax optimization task.

Datasets We consider two regression tasks. The wind dataset consists of hourly wind energy generation in ERCOT
for the year of 2022 [38]. The sunspot dataset [11] is a standard forecasting benchmark where the task is to predict the
total monthly sunspots. For each dataset, we forecast for 1000 time steps, using lag features from the previous 24 steps.

Metrics We evaluate predictive performance using the Symmetric Mean Absolute Percentage Error (SMAPE),
defined as SMAPE = 1

T

∑T
t=1

|yt−ŷt|
(|yt|+|ŷt|)/2 where ŷt is the mean of the forecast pt. We evaluate calibration using
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Figure 1: Comparison of the decision loss in-
curred by decisions based on expert forecasts
before and after recalibration with ORCA. Lower
values are better.

wind sunspot

Forecaster QCE SMAPE QCE SMAPE

stochastic gradient trees 0.163 0.403 0.100 0.505
+ isotonic 0.246 0.554 0.242 1.081
+ ORCA (ours) 0.013 0.405 0.045 0.513

neural network 0.142 0.353 0.048 0.447
+ isotonic 0.121 0.567 0.147 1.061
+ ORCA (ours) 0.083 0.397 0.042 0.453

Hoeffding tree 0.212 0.545 0.072 0.432
+ isotonic 0.186 0.428 0.116 1.061
+ ORCA (ours) 0.016 0.431 0.040 0.479

marginal 0.126 0.545 0.046 0.534
+ isotonic 0.094 0.359 0.084 1.016
+ ORCA (ours) 0.017 0.391 0.040 0.576

Table 1: Comparison of two recalibration techniques, isotonic [32]
and ORCA (ours). The goal is to reduce miscalibration (QCE),
while maintaining predictive performance (SMAPE). The best
value is bolded and values within 10% of best are underlined.

the Quantile Calibration Error (QCE). For the set of test quantiles Q = {0.01, 0.02, . . . , 0.99}, the QCE is defined
as QCE =

∑
q∈Q (fq,T − q)

2
, where fq,T is the frequency of the event Fpt

(yt) ≤ q up to day T . The QCE checks
whether yt exceeds each quantile of the forecasts with the expected frequency.

Baseline Comparison We compare ORCA to isotonic recalibration [32], a popular technique for recalibrating
predictions in a batch setting. At each time step t, we fit an isotonic recalibrator based on the data up to time t and
apply it to recalibrate the expert forecast at time t+ 1.

Results The experimental results are displayed in Table 1. We find that ORCA significantly improved calibration
error, while minimally impacting predictive performance. Applying ORCA improved calibration in all 8 of the settings
we tested, decreasing QCE by between 13% and 92% depending on the dataset and model. ORCA minimally impacted
SMAPE, increasing SMAPE by less than 10% in 7 out of 8 cases, and even decreasing it in 2 cases. ORCA consistently
outperformed isotonic recalibration in terms of QCE across all datasets and models.

6.2 Wind Farm Decision Task

In this experiment, we demonstrate how ORCA can be used to inform downstream decisions with decision calibration.
We design an experiment similar to [47], in which a wind farm operator submits a future generation plan to a grid
operator each day. On each day, the operator announces a commitment a(i)t ∈ R for each hour i = 1, . . . , 24 of the next
24-hour period, and receives a penalty depending on the deviation between the offered and actual generation, given by
ℓ(at, yt) =

∑24
i=1(1 + λ)(y

(i)
t − a

(i)
t )+ + (1− λ)(a

(i)
t − y

(i)
t )+. Given a probabilistic forecast for energy generation

over each of the next 24 hours, we choose the set of commitments that minimize the expected loss under the forecasted
distributions. We then compare the decision losses incurred by a bagging trees forecaster to those incurred by forecasts
recalibrated using ORCA. The results of the decision-making experiment are displayed in Figure 1. We observe that
applying ORCA consistently improves the downstream decision loss.

7 Related Work

Interest in calibrated online forecasting dates back to the 1980’s [12]. A well-developed line of work focuses on
classification tasks [1, 26, 39, 20, 29, 40, 45, 31], where connections between calibration and Blackwell’s approachability
theorem [9] are well-known. Most analyses [e.g., 39, 1, 26, 40] leverage the bilinearity of the payoff function in
classification tasks to invoke a fixed point theorem such as von Neumann’s minimax theorem [44] or Sion’s minimax
theorem [41].
Of particular relevance for our work, Okoroafor et al. [39] give methods for no-regret recalibration in classification.
The main distinction between our framework and these works is that we study calibration for nonlinear payoffs, such
as quantile calibration in regression. We then provide general gradient-based solvers and efficient oracles for these
nonlinear payoffs.
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Noarov and Roth [37] is also particularly relevant, as they study calibration for properties satisfying a general elicitability
criterion. However, they study randomized forecasts over a discretized space of forecasts while our framework applies
to deterministic forecasts over a continuous forecast space. Other recent work extends online calibration to include
multicalibration [27, 6, 33, 22] and conformal prediction [23, 5].

8 Conclusion
This work presents a novel framework for calibrated probabilistic forecasting for sequences over any compact outcome
space. To implement our framework, we introduce generally-applicable gradient-based algorithms and provide
specialized algorithms for common forecasting scenarios. Empirically, we find that our methods improve calibration
and decision-making when used for recalibration in energy systems. Investigating the connections between Blackwell
forecasting, multicalibration [27, 37] and omnicalibration [22] is an interesting direction for future work.
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A Proofs
Some of our results will invoke the following conditions:

Condition 1 (Boundedness). The norm of the payoff is bounded by B := supx∈X ,p∈∆(Y),y∈Y ∥π(x, p, y)∥
2
<∞.

Condition 2 (Consistency). The expected payoff is zero when the outcome is drawn from the forecast:
Ey∼p [π(x, p, y)] = 0,∀x ∈ X ,∀p ∈ ∆(Y).
Condition 3 (Continuity). The payoff is continuous as a function of the forecast p 7→ π(x, p, y) on ∆(Y) under the
Wasserstein metric, ∀x ∈ X ,∀y ∈ Y .

We first prove two useful lemmas.
Proposition A.1. If the payoff is bounded (Condition 1), then

∥πT ∥2 ≤
B

T
+

2

T

T∑
t=1

⟨πt−1, π(xt, pt, yt)⟩ . (3)

Proof. We proceed by deriving a recursive form for ∥πT ∥2H.

∥πT ∥2H =

∥∥∥∥T − 1

T
πT−1 +

1

T
πT

∥∥∥∥2
H

(10)

=

(
T − 1

T

)2

∥πT−1∥2H +
1

T 2
∥πT ∥2H +

2(T − 1)

T 2
⟨πT−1, πT ⟩H (11)

Multiplying through by T 2, we have

T 2 ∥πT ∥2H = (T − 1)
2 ∥πT−1∥2H + ∥πT ∥2H + 2(T − 1) ⟨πT−1, πT ⟩H (12)

Note that this is a recursion over ρT := T 2 ∥πT ∥2H. Unrolling this recursion gives

T 2 ∥πT ∥2H =

T∑
t=1

∥πt∥2H + 2

T∑
t=1

(t− 1) ⟨πt−1, πt⟩H (13)

Finally, dividing through by T 2 and using the boundedness of πT gives the desired result:

∥πT ∥2H =
1

T 2

T∑
t=1

∥πt∥2H +
2

T 2

T∑
t=1

(t− 1) ⟨πt−1, πt⟩H (14)

≤ B

T
+

2

T

T∑
t=1

⟨πt−1, πt⟩H (15)

Proposition A.2. If the payoff is consistent (Condition 2) and continuous (Condition 3), then for all π ∈ H and x ∈ X ,
there exists a forecast p ∈ ∆(Y) such that

max
y∈Y

⟨π, π(x, p, y)⟩ ≤ 0. (4)

Proof. Abusing notation, we write the expected payoff for an outcome y distributed according to a distribution q ∈ ∆(Y)
as

π(x, p, q) := Ey∼q [π (x, p, y)] . (16)

The only randomness in Equation equation 16 is due to y. Observe that exchanging the worst-case y ∈ Y for the
worst-case distribution q ∈ ∆(Y) does not change the value of the minimax game:

min
p∈∆(Y)

max
y∈Y

⟨π, π(x, p, y)⟩ = min
p∈∆(Y)

max
q∈∆(Y)

⟨π, π(x, p, q)⟩ (17)

To see that the LHS is not greater than the RHS, note that π(x, p, y) can be represented as π(x, p, δy), where δy is a
Dirac distribution at y. To see that the RHS is not greater than the LHS, note that the objective value ⟨π, π(x, p, q)⟩ is
linear in q, so the objective value will always be maximized by a Dirac distribution.
Next, we apply the Ky Fan Minimax Inequality Fan [17] to upper bound the RHS.
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Theorem A.3 (Ky Fan Minimax Inequality Fan [17]). Let ∆(Y) be a nonempty compact convex subset of a Hausdorff
topological vector space, and let g : ∆(Y)×∆(Y)→ R be a function such that:

• p 7→ g(p, q) is lower-semicontinuous for all q ∈ ∆(Y)
• q 7→ g(p, q) is quasi-concave for all p ∈ ∆(Y)

Then
min

p∈∆(Y)
max

q∈∆(Y)
g(p, q) ≤ max

q∈∆(Y)
g(q, q) (18)

We apply the Ky Fan Minimax Inequality to the function g(p, q) := ⟨π, π(x, p, q)⟩H. Our assumption that the payoff is
mean-zero implies that π(x, q, q) = 0, so for all q ∈ ∆(Y) we have g(q, q) = ⟨π, π(x, q, q)⟩H = ⟨π, 0⟩H = 0.
Thus, the lemma is proven once we meet the conditions of the Ky Fan Minimax Inequality. Namely, we must
show that ∆(Y) is a nonempty compact convex subset of a Hausdorff topological vector space, and that g(p, q) is
lower-semicontinuous in its first argument and quasi-concave in its second argument.
We first show that ∆(Y) is a nonempty compact convex subset of a Hausdorff topological vector space. The space of
signed measures on Y is a Hausdorff topological vector space when endowed with the weak∗ topology. The set of
probability measures ∆(Y) is a subset of the space of signed measures, and it is an elementary result of probability
theory that this set is nonempty and convex [see, e.g., 8]. The compactness of ∆(Y) follows from our assumption that
Y is a compact metric space [46, Theorem 10.2].
All that remains is to show that g(p, q) is lower-semicontinuous in its first argument and quasi-concave in its second
argument. Note that g(p, q) is linear, and therefore quasi-concave, in its second argument due to its construction as
an expectation. Lastly, note that Wasserstein convergence is equivalent to weak∗ convergence on a Polish space [43,
Theorem 6.9], so our assumption that g(p, q) is Wasserstein continuous in its first argument implies lower-semicontinuity
in the weak∗ topology. Thus, the result follows by application of the Ky Fan Minimax Inequality.

Theorem 4.3. If the payoff satisfies Conditions 1-3, then Algorithm 1 has miscalibration bounded by ∥πT ∥2H ≤ B/T
for any sequence {(xt, yt)}∞t=1.

Proof. The theorem follows directly from Lemmas 4.1 and 4.2. For each time step t, Lemma 4.2 guarantees the
existence of a forecast pt such that maxy∈Y ⟨πt, π(xt, pt, qt)⟩ ≤ 0. Next, Lemma 4.1 implies that any forecasting
strategy which plays such a forecast pt achieves

∥πT ∥2H ≤
B

T
+

2

T

T∑
t=1

⟨πt−1, πt⟩H

≤ B

T

Taking the square root of both sides yields the desired result.

Proposition A.4. Let π(1), . . . , π(n) be n payoff functions taking values in Hilbert spacesH1, . . . ,Hn, respectively.
Suppose each payoff π(i) satisfies the Conditions 1-3 with bound Bi. Applying Algorithm 1 to the direct sum payoff
π(1) ⊕ · · · ⊕ π(n) ensures

∑n
i=1 ∥π

(i)
T ∥2Hi

≤ 1
T

∑n
i=1 Bi, and using the normalized payoff π(1)

B1
⊕ · · · ⊕ π(n)

Bn
ensures

∥π(i)
T ∥2Hi

≤ nBi

T for 1 ≤ i ≤ n.

Proof. The proposition includes two inequalities. Define the concatenated payoff π(1:n) := [π(1), . . . , π(n)] taking
values in the direct sum Hilbert spaceHn

1 =
⊕n

i=1Hi. Note that π(1:n) inherits all the conditions of Theorem 4.3 from
the component payoffs, but with the payoff bound Bn

1 =
∑n

i=1 Bi. Thus, the first inequality is a direct result of Theorem
4.3. To see the second inequality, we first define a normalized payoff ρ(1:n) := [π(1)/B1, . . . , π

(n)/Bn] where each
component payoff has norm at most 1. Applying the first inequality, we get that ∥ρ(1:n)T ∥2Hn

1
=
∑n

i=1 ∥π
(i)
T ∥2Hi

/Bi ≤ n
T .

Since each term of the sum is nonnegative, we have for all 1 ≤ i ≤ n that ∥π(i)
T ∥2Hi

≤ nBi

T .

A.1 An Extension to the Existence Theorem for Semi-Consistent Payoffs

Note that πREG in Section 4.2 does not satisfy consistency (Condition 2), which requires that Ey∼p [π(x, p, y)] =
0,∀x ∈ X ,∀p ∈ ∆(Y). Thus, we introduce a weaker condition (Condition 4), which allows us to control the positive
component of the excess loss, since negative excess loss (i.e., outperforming the experts) is not problematic. Note that
Condition 4 applies to πREG due to the propriety of the scoring rule; the true distribution has expected loss no greater
than any other forecast.
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Condition 4 (Semi-consistency). A vector-valued payoff π(x, p, y) ∈ Rm is semi-consistent if Ey∼p [πi(x, p, y)] ≤ 0,
for all i ∈ {1, . . . ,m}, p ∈ ∆(Y), and x ∈ X .

Proposition A.5. If a vector-valued payoff function satisfies Conditions 1, 3 and 4, then Algorithm 1 achieves
∥ (πT )

+ ∥2 ≤ B/T for any sequence {(xt, yt)}∞t=1, where (πT )
+

= ((π1,T )
+, . . . , (πm,T )

+) for (πi,T )
+ =

max(0, πi,T ) is the positive part.

The proof of Proposition A.5 is almost identical to the proof of Theorem 4.3, with the average payoff replaced
by its positive part. Applying Proposition A.5 to πREG gives the no-regret guarantee that RT ≤

√
nBℓ√
T

, where

Bℓ = supp,y ℓ(p, y). Thus, we achieve the same O(1/
√
T ) regret rate.

B Calibration Payoffs
Below, we introduce an additional payoff for full distribution calibration, and add details to for additional precision for
the quantile calibration payoff.

Distribution Calibration Distribution calibration states that across all time steps t with the same forecast p, the
distribution of outcomes should match the forecast [42]. In the batch setting, where the outcome y and forecast p
are random variables, distribution calibration can be written as (y | p) ∼ p. For example, when forecasting the daily
high temperature, on days the forecast is a Gaussian distribution with mean 20◦C and variance 3◦C, the observed high
temperatures should be roughly Gaussian with the same mean and variance. To define distribution calibration in the
online setting using payoffs, we use a vector-based payoff indexed by a discrete set of distributions p ∈ ∆(Y), given by
πp(xt, pt, yt) = 1 {pt ≈ p} (Fpt

− Fδ(yt)), where Fpt
and Fδ(yt) are the cdfs for the forecast and a Dirac measure at

yt, respectively. Note that a fine discretization of the space of distributions ∆(Y) will grow exponentially in size as Y
grows, highlighting the computational hardness of distribution calibration.

Quantile Calibration Since distribution calibration is often too difficult to impose in regression—primarily due to the
need for a conditioning event for each distribution—quantile calibration is a popular weaker alternative, requiring that
the quantiles of forecasts are accurate, on average. That is, the outcome yt should be less than or equal to the α-quantile
of the forecast with frequency α, for all α ∈ [0, 1] (e.g., yt should exceed the forecasted median half the time). Formally,
quantile calibration states that limT→∞

1
T

∑T
t=1 1 {yt ≤ Quantile(pt, α)} = α for all α ∈ [0, 1]. Quantile calibration

enforces the law of probability that the probability integral transform (PIT) of a continuous random variable follows
a uniform distribution on the unit interval. In a batch setting where the outcomes are i.i.d. random variables and if
the forecasts and ground-truth distributions are continuous, the payoff πα(x, p, y) = 1 {yt ≤ Quantile(pt, α)} − α,
indexed by α ∈ [0, 1], suffices to measure quantile miscalibration. To handle the case where there are discontinuities in
the cdf of the forecast, we allow forecasts over a strict superset of the outcome space and linearize across discontinuities
in the forecasted CDF (see Ziegel and Gneiting [50] for a similar approach in the batch setting), yielding the payoff

πα(x, p, y) = λ1
{
Fp(y) ≤ α−}+ (1− λ)1

{
Fp(y) ≤ α+

}
− α (19)

where α+ = inf {α′ ∈ Range(Fp) : α
′ ≥ α}, α− = sup {α′ ∈ Range(Fp) ∪ {0} : α′ ≤ α}, and λ = (α+ −

α)/(α+ − α−)

C Oracles
This section introduces half-space oracles designed for specific notions of calibration. Specifically, we focus on the
following: adaptive conformal inference, quantile calibration, distribution calibration, moment-based distribution
calibration, and decision calibration. In each setting, we introduce the definition of calibration, provide a half-space
oracle, prove its correctness, and discuss its computational complexity.

C.1 Quantile-Based Notions of Calibration for Regression Problems

We start with perhaps the simplest setting, which considers forms of calibration defined for regression problems and in
which calibration is defined using quantiles. Specifically we look at two approaches of this form: adaptive conformal
inference—a setting that matches exactly the definition introduced by Gibbs and Candes [23]—as well as quantile
calibration, an extension to full quantile functions.

Preliminaries We introduce both quasi-randomized and deterministic algorithms. We use the term quasi-randomized
to say that the randomization will be between two forecasts (our outputs) f1, f2 that satisfy ||f1 − f2|| < ϵ, for some
small ϵ and according to some norm || · ||. Our deterministic algorithms will assume the existence of a root finding
oracle for a function g : X → R on some closed and compact set X (e.g., the interval [0,1]) that is guaranteed to have a
point x such that g(x) = 0.
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C.1.1 Adaptive Conformal Inference
Setup In the setting of adaptive conformal inference, we are given a target quantile β as well as a quantile function
Qt(a) (that could be different at each time step) that targets a continuous outcome yt ∈ R. Our goal is to choose at each
time step an αt ∈ [0, 1] such that the Qt(αt) are on average the β-th quantile within an error tolerance of ϵ > 0. In
other words, we want

lim
T→∞

(
1

T

T∑
t=1

1 {yt ≤ Q(αt)} − β

)
≤ ϵ.

Randomized Algorithm We define our algorithm as follows. First, we define a finite of set of possible outputs for αt

over which we will perform randomization. Specifically, we define our action set as A = {a0, a1, . . . , aM} where A is
a discretization of [0, 1], i.e., 0 = α0 ≤ αi < αi+1 ≤ αM = 1. We will play distributions p ∈ ∆(A) over the action
set. We define our payoffs as follows. Let et(a) = 1 {yt ≤ Qt(a)}. Let the payoff be indexed by actions a ∈ A, given
by πa(pt, yt) = pt(a) (et(a)− β), where pt(a) is the probability pt assigns to action a. We want the average set of
payoffs to approach a ball of size ϵ centered at the origin. Note that this yields a valid quantile estimate as defined
above.
In order to achieve this goal using approachability, we need to devise a half-space oracle that will output at each time
step a distribution pt over A such that for any vector of historical payoffs πt, we have ⟨πt, π(pt, y)⟩ ≤ 0 for all y.
We construct the following half-space oracle for this goal, given the average payoff πt:

• If for all a, πt,a ≥ 0, output α0 with probability one.

• If for all a, πt,a ≤ 0, output αM with probability one.

• Otherwise, there will exist an i ∈ {1, . . . ,M} such that sign(πt,ai) ̸= sign(πt,ai+1). Then choose the above
ai, ai+1 and play with probability pi = |π−1

t,ai
|/(|π−1

t,ai
|+ |πt,ai+1 |−1) the value ai, and otherwise ai+1. Then

for all y, we have:

Lemma C.1. Let ϵ > 1/M . Then the above algorithm is a half-space oracle for a ball of radius ϵ. Furthermore, the
algorithm runs in log(ϵ) time and O(1/ϵ) space.

Proof. First, we explain the time and space complexity of the algorithm. First, the space complexity is O(M) = O(ϵ)
because ϵ > 1/M . The time complexity is O(log(M)) = O(log(ϵ)) because we can find an i such that sign(πt,ai

) ̸=
sign(πt,ai+1

) (or determine that none exists) in O(log(M)) time using binary search.
Next, we prove that in each of the three cases above, the property of the half-space oracle is satisfied. Note that:

⟨πt, π(pt, y)⟩ = πt,aipt(ai) (et(ai)− β) + πt,ai+1pt(ai+1) (et(ai+1)− β)

= k · (et(ai)− et(ai+1)) for a constant k > 0, by choice of pt

note again that et(a1) = 1 =⇒ et(a2) = 1 if a1 < a2 therefore the above expression is ⟨πt, π(pt, y)⟩ ≤ 0.

Deterministic Algorithm Our deterministic algorithm is a straight-forward extension of the above procedure. We
now let the action space A = [0, 1] be equal to the entire unit interval. The payoffs are the same as above for each
a ∈ A. The algorithm is defined as follows. Denote the average payoff by c : A→ R. Then we run the zero-finding
oracle and output the zero of c if it exists. Otherwise, either c ≥ 0, and we output 0 or c ≤ 0, in which case we output 1.

Lemma C.2. The above algorithm is a deterministic half-space oracle for a ball of radius ϵ. Its runtime is equal to that
of the root-finding oracle.

Proof. First, note that the above three cases in the algorithm are exhaustive for the same reason as in the previous
theorem. The two edge cases are handled as before. In the third case (when the root exists), we put all the probability
on the root a′, and the dot product reduces to:

c · (pt ⊙ π(y)) = c(a′)pt(a
′)π(a′, y) = 0

since c(a′) is zero (and note that we defined the inner product c · (pt ⊙ π(y)) to generalize to the function c).

C.1.2 Quantile Calibration
Next, we are interested in a generalization of the above setting, in which the output of the algorithm is an entire quantile
function.
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Setup We are given as input a quantile function Qt(a) (that could be different at each time step) that targets a
continuous outcome yt ∈ R that is bounded by values ymin, ymax. Our goal is to choose at each time step a recalibrator
function Rt : [0, 1]→ [0, 1] such that the corrected quantile function Q′

t = Qt ◦Rt represents valid quantiles within an
error tolerance of ϵ > 0 for all β. In other words, we want

lim
T→∞

(
1

T

T∑
t=1

I{yt ≤ Q′(β)} − β

)
≤ ϵ for all β > 0.

Deterministic Algorithm Without loss of generality, we can define our action space to consist of quantile functions
Qt. We define our payoffs as follows. Let et(a) = I{yt ≤ Q(a)}. Let π(Q, a, y) = et(a) − a, which is a vector
indexed by a ∈ [0, 1]. We want the average set of payoffs to approach a ball of size ϵ centered at the origin. Note that
this yields a valid quantile estimate as defined above.
In order to achieve this goal using approachability, we need to devise a half-space oracle that will output at each time
step a Qt such that for any vector of historical payoffs c ∈ Rm, we have c · πt(Q, y) ≤ 0 for all y, where πt(Q, y) is
the vector of payoffs indexed by A and · denotes the inner product.
We construct the following half-space oracle for this goal. Suppose we are given a vector of historical payoffs c. We
run a root finding-algorithm to find at least one root (or the absence of any root).

• If c ≥ 0, let Q(a) = ymin for all a, and output Q.

• If c ≤ 0, let Q(a) = ymax for all a, and output Q.

• Otherwise, there is a zero a′ such that c(a′) = 0. Let A1 be the integral under the curve of c for a ≤ a′ and let
A2 be the integral under the curve for a ≥ a′.

– If A2 −A1 ≤ 0, let Q(a) = ymin for a ≤ a′ and Q(a) = ymax for a ≤ a′.
– If A1 +A2 ≤ 0 let Q(a) = ymax for all a, and output Q.
– If A1 +A2 ≥ 0 let Q(a) = ymin for all a, and output Q.

is positive and the area under the curve for a ≥ a′ is negative, let Q(a) = ymin for a ≤ a′ and Q(a) = ymax
for a ≤ a′.

Lemma C.3. The above algorithm is a deterministic half-space oracle for a ball of radius ϵ. Its runtime is equal to that
of the root-finding oracle.

Proof. First, note that the above three cases in the algorithm are exhaustive. Next, note that when Q(a) = ymax, then
π(Q, a, y) ≥ 0 for all y. When Q(a) = ymin, then π(Q, a, y) ≤ 0 for all y. Thus, in each of the first two cases we have
c · πt(Q, y) ≤ 0.
In the third setting, first subcase, by construction we have exactly c · πt(Q, y) ≤ A2 −A1 ≤ 0. The last two subcases
follow similarly. Note that computationally, we can distinguish among all these subcases, by performing an inner
product with c and observing the result. The computational cost of the algorithm is that of running the root finding
algorithm and the inner product.

Note that this algorithm is not practical, as it produces Q’s that are step functions. It is meant to illustrate the existence
of a polynomial algorithm in our framework. In practice, one would use our optimization-based solution.

C.2 Variations of Distribution Calibration

Next, we are going to derive half-space oracles for versions of distribution calibration, both the original version of
distribution calibration, as well as more restricted and tractable versions, including decision calibration and our novel
formulation of moment-based calibration.

C.2.1 Distribution Calibration via Discretization
Our overall strategy for constructing half-space oracles will be inspired by Kakade and Foster [29]. We first provide a
summary of their approach that closely follows their exposition.
Specifically, we will define a discretization V of the space of forecasts. For example, the set V could consist of
probability distributions which are specified to a finite number of digits of precision. Essentially, our quasi-randomized
approach will output a distribution over a small number of similar elements of V , and our deterministic approach will
play a fixed point of this distribution.
More specifically, we will assume that the forecasts live in a compact set ∆ (this assumption will have to be verified
for each definition of calibration). We then define a triangulation of ∆, i.e., a partition into a set of simplices such
that any two simplices intersect in either a common face, common vertex, or not at all. Let V be the vertex set of this
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triangulation. Note that any point p lies in some simplex in this triangulation, and, slightly abusing notation, let V (p) be
the set of corners for this simplex. We are going to produce a randomized output over these corners.
To formalize this, associate a test function wv(p) with each v ∈ V as follows. Each distribution p can be uniquely
written as a weighted average of its neighboring vertices, V (p). For v ∈ V (p), let us define the test functions wv(p) to
be these linear weights, so they are uniquely defined by the linear equation p =

∑
v∈V (p) wv(p)v.

We also define the discretization to be sufficiently small: given a target precision ϵ > 0 we define the discretization such
that for all f1, f2 in the same simplex we have ||f1 − f2|| < ϵ.

Deterministic and Quasi-Deterministic Calibration We use the following results from Kakade and Foster [29]. Let
µT (v) =

1
T

∑T
t=1 wv(ft)(yt − ft). For v ∈ V , define ρT (v), a function which updates v using the calibration error

µT (v): ρT (v) = v + µT (v). We extend this function to arbitrary p by interpolating between the vertices of the cell that
contains p: ρT (p) = p+

∑
v∈V wv(p)µT (v).

Consider the following ”play the fixed point” algorithm defined by Kakade and Foster [29]. At time T = 1, we set
µ0(v) = 0 for all v ∈ V . Then at each future time T , compute a fixed point of ρT−1 and forecast this fixed point.
We will use the following facts
Lemma C.4. For all T , a fixed point of ρT exists and the forecast fT at time T satisfies

∑
v∈V wv(fT )µT−1(v) = 0.

Lemma C.5. The above deterministic algorithm is weakly calibrated in the sense that 1
T lim→∞

∑T
t=1 w(ft)(yt −

ft)→ 0 in the ℓ∞ norm for any continuous function w.

Consider now the following quasi-deterministic version of the above algorithm. We start with a forecasting procedure
that is weekly calibrated. At time t, that procedure outputs a forecast ft. We define a quasi-deterministic forecast by
outputting the vertices v ∈ V (ft) of the simplex containing ft, each with probability wv(ft). Recall that we have
chosen the discretization such that ||f1 − f2|| < ϵ.
Lemma C.6. The limit of the calibration error of the above algorithm as T →∞ is at most ϵ.

Next, we will use these tools to establish half-space oracles for our framework.

C.2.2 Moment-Based Distribution Calibration
Setup In the setting of moment-based calibration, we are trying to forecast at each time step t a continuous label
yt ∈ R and we assume that |yt| ≤ B is bounded by B > 0. Our goal is to choose at each step t a prediction µt, σt such
that on average, our of all the times when we predicted µt, σt the mean and the variance of the yt are also approximately
equal µt, σt.

Randomized Algorithm We define our action set as A = {(µi, σj)} for i, j in a grid with M ticks along each
dimension). The grid represents our set if simplexes and the ticks on the grid are the vertices V . We will output a
probability p over A and sample a forecast ft from p. We define a set of payoffs as π(µ, σ, y) = (µ− y, σ−y

2]); thus π
has dimension 2M2. We want the average set of payoffs to approach a ball of size ϵ centered at the origin. Note that
this yields a valid quantile estimate as defined above.
In order to achieve this goal using approachability, we need to devise a half-space oracle that will output at each time
step a distribution pt over A such that for any vector of historical payoffs c ∈ Rm, we have c⊤(pt ⊙ πt(y)) ≤ 0 for all
y, where πt(y) is a vector of payoffs indexed by A.
We construct the following half-space oracle for this goal. Suppose we are given a vector of historical payoffs c. By
the above fixed point lemma, there must exist a fixed point ft such that

∑
v∈V wv(fT )µT−1(v) = 0. We can find the

cell where ft lives by enumerating the M2 cells. Then we set pt, our probability over the A to be zero everywhere
except at V (ft) and equal to wv(ft) everywhere else.
Lemma C.7. Let ϵ > 1/M . Then the above algorithm is a half-space oracle for a ball of radius ϵ. Furthermore, the
algorithm runs in ϵ2 time and O(1/ϵ2) space.

Proof. First, note that our set of possible forecasts is compact, which guarantees that the fixed point exists.
Next, we prove that the property of the half-space oracle is satisfied. If the fixed point is in the interior of a cell, note
that:

c⊤t (pt ⊙ π(y)) =
∑
v∈V

wv(ft)µt−1(v) = 0

because ct is defined to be previous vector of average payoffs, which is precisely µt−1.
Note that there may be edge cases, where the fixed point is at the edge of the grid. Then we simply have to enumerate
the following edge cases. Suppose that cσ,i,j=0 ≥ 0 for all i (it’s fully positive on the left edge of the grid). Then you
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can find an optimal strategy over µ as in a 1d problem over (i, j = 0). Suppose that cσ,i,j=M ≤ 0 for all i (it’s fully
positive on the right edge) Then you can find an optimal strategy over µ as in a 1d problem over (i, j = M). Suppose
that cµ,i=0,j ≥ 0 for all j (it’s fully positive on the top edge of the grid) Then you can find an optimal strategy over σ as
in a 1d problem over (i = 0, j). Suppose that cµ,i=M,j ≤ 0 for all j (it’s fully positive on the bottom edge) Then you
can find an optimal strategy over σ as in a 1d problem over (i = M, j).
Next, we explain the above time and space complexity of the algorithm. First, the space complexity is O(M2) =
O(1/ϵ2) because ϵ > 1/M . The time complexity is O(M2) = O(ϵ2) because we simply enumerate all the cells.

Deterministic Algorithm The above procedure naturally leads to a natural randomized algorithm, where we simply
forecast the fixed point. Computationally, implementing this algorithm requires an oracle for Brouwer’s fixed-point
problem (in general, this is PPAD-hard).

C.2.3 General Distribution Calibration
We can extend the above approach to more general settings, where we want to main a general notion of distribution
calibration. In other words, out of the times when we predict ft, we want the distribution of y to look like ft.

Setup We are trying to forecast at each time step t a continuous label yt ∈ R and we assume that |yt| ≤ B is bounded
by B > 0. We are going to assume a certain discretization for y into a partition of M intervals of its domain. Our goal
is to choose at each step t a forecast ft such that on average, our of all the times when we predicted yt we have yt ≈ ft:
this can be roughly viewed as matching probability mass functions.

Randomized Algorithm We define our action set A as a discretization of the set of distributions ft. This can
represent a discretization of the range of ft into a grid of N points. The grid represents our set if simplexes and the
ticks on the grid are the vertices V . We will output a probability p over A and sample a forecast ft from p. We define a
set of payoffs as π(f, y) = f − y; thus π has dimension O(MN ). We want the average set of payoffs to approach a
ball of size ϵ centered at the origin. Note that this yields a valid quantile estimate as defined above.
Again, we need to devise a half-space oracle that will output at each time step a distribution pt over A such that for any
vector of historical payoffs c ∈ Rm, we have c⊤(pt ⊙ πt(y)) ≤ 0 for all y, where πt(y) is a vector of payoffs indexed
by A.
We construct the following half-space oracle for this goal. Suppose we are given a vector of historical payoffs c. By
the above fixed point lemma, there must exist a fixed point ft such that

∑
v∈V wv(fT )µT−1(v) = 0. We can find the

cell where ft lives by enumerating the MN cells. Then we set pt, our probability over the A to be zero everywhere
except at V (ft) and equal to wv(ft) everywhere else.

Lemma C.8. The above algorithm is a half-space oracle for a ball of radius ϵ.

Proof. First, note that our set of possible forecasts is compact, which guarantees that the fixed point exists.
Next, we prove that the property of the half-space oracle is satisfied. If the fixed point is in the interior of a cell, note
that:

c⊤t (pt ⊙ π(y)) =
∑
v∈V

wv(ft)µt−1(v) = 0

because ct is defined to be previous vector of average payoffs, which is precisely µt−1. Edge cases would be handled
similarly to the earlier proof.

Note that in most cases, this algorithm would not be computationally tractable. However, that is expected: the problem
is in general PPAD-hard. This question of computational tractability is what motivated our previous definition of
moment-based calibration.

Deterministic Algorithm The above procedure naturally leads to a natural randomized algorithm, where we simply
forecast the fixed point. Computationally, implementing this algorithm, requires access to an oracle’s for Brower’s
fixed-point problem (in general, this is PPAD-hard).

D Low Regret Relative to Baseline Classifiers

Here, we show that a calibrated forecaster also has small regret relative to any bounded proper loss if we use a certain
construction that combines our algorithm with a baseline forecaster.
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D.1 Recalibration Construction

Setup We start with an online forecaster F that outputs uncalibrated forecasts pFt at each step; these forecasts are
fed into a recalibrator such that the resulting forecasts pt are calibrated and have low regret relative to the baseline
forecasts pFt .
Formally, at every step t = 1, 2, ... we have:

1: Forecaster F predicts pFt .
2: A recalibration algorithm produces a calibrated forecast pt based on pFt .
3: Nature reveals label yt
4: Based on xt, yt, we update the recalibration algorithm and optionally update H .

Notation We will reuse some of the previously introduced construction based on the work of [29]. Specifically, recall
that we define a discretization V of the space of forecasts. We assume that the forecasts live in a compact set ∆ and
we define a triangulation of ∆, i.e., a partition into a set of simplices such that any two simplices intersect in either a
common face, common vertex, or not at all. Let V be the vertex set of this triangulation, and let V (p) be the set of
corners for this simplex.
Note that each distribution p can be uniquely written as a weighted average of its neighboring vertices, V (p). For
v ∈ V (p), we define the test functions wv(p) to be these linear weights, so they are uniquely defined by the linear
equation p =

∑
v∈V (p) wv(p)v. We also define the discretization to be sufficiently small: given a target precision ϵ > 0

we define the discretization such that for all f1, f2 in the same simplex we have ||f1 − f2|| < ϵ.

D.2 Recalibration Algorithm

We are going to define a general meta-algorithm that follows a construction in which we run multiple instances of our
calibrated forecasting algorithms over the inputs of F .
More formally, we take the aforementioned partition of the space of forecasts of ∆ of F and we associate each simplex
with an instance of our calibration algorithm F cal (using the same ∆ and discretization V ). In order to compute pFt , we
invoke the subroutine F cal

j associated with simplex Ij containing pFt (with ties broken arbitrarily). After observing yt,
we pass it to F cal

j .

The resulting procedure produces valid calibrated estimates because each F cal
j is a calibrated subroutine. More

importantly the new forecasts do not decrease the predictive performance of F , as measured by a proper loss ℓ. In the
remainder of this section, we establish these facts formally.

D.3 Theoretical Analysis

Notation Our task is to produce calibrated forecasts. Intuitively, we say that a forecast Ft is calibrated if for every
y′ ∈ Y , the probability Ft(y

′) on average matches the frequency of the event {y = y′}. We formalize this by introducing
the ratio

ρT (p) =

∑T
t=1 yt · Ipt=p∑T

t=1 Ipt=p

(20)

Intuitively, we want ρT (p)→ p, a.s. as T →∞ for all y. In other words, out of the times when the predicted probability
for yt is p, the average yt look like p.
The quality of probabilistic forecasts is evaluated using proper losses ℓ. Formally, a loss ℓ(y, p) is proper if p ∈
argminq∈P Ey∼(p)ℓ(y, q) ∀p ∈ P. An example in binary classification is the log-loss ℓlog(y, p) = y log(p) + (1 −
y) log(1− p). We will assume that the loss is bounded by B > 0 .
We measure calibration a calibration error CT . Our algorithms will output discretized probabilities; hence we define the
error relative to a set of possible predictions V

CT =
∑
p∈V

|ρT (p)− p|

(
1

T

T∑
t=1

I{pt=p}

)
. (21)

D.3.1 A Helper Lemma

In order to establish the correctness of our recalibration procedure, we need to start with a helper lemma. This lemma
shows that if forecasts are calibrated, then they have small internal regret.
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Lemma D.1. If ℓ is a bounded proper loss, then an (ϵ, ℓ1)-calibrated F cal a.s. has a small internal regret w.r.t. ℓ and
satisfies uniformly over time T the bound

Rint
T = max

ij

T∑
t=1

Ipt=pi
(ℓ(yt, pi)− ℓ(yt, pj)) ≤ 2B(RT + ϵ). (22)

Proof. Let T be fixed for the rest of this proof. Let Iti = Ipt=pi be the indicator of F cal outputting prediction pi at time
t, let Ti =

∑T
t=1 Iti denote the number of time i/N was predicted, and let

Rint
T,ij =

T∑
t=1

Iti (ℓ(yt, pi)− ℓ(yt, pj))

denote the gain (measured using the proper loss ℓ) from retrospectively switching all the plays of action i to j. This
value forms the basis of the definition of internal regret.
Let T (i, y) =

∑T
t=1 ItiI{yt = y} denote the total number of pi forecasts at times when yt = y. Observe that we have

T (i, y) =
T∑

t=1

ItiI{yt = y} =
∑T

t=1 ItiI{yt = y}
Ti

Ti =

∑T
t=1 ItiI{yt = y}∑T

t=1 Iti
Ti

= q(i, y)Ti + Ti

(∑T
t=1 ItiI{yt = y}∑T

t=1 Iti
− q(i, y)

)
= q(i, y)Ti + Ti (ρT (pi)− pi) ,

where q(i, y) = pi(y). The last equality follows using some simple algebra after adding and subtracting one inside the
parentheses in the second term.
We now use this expression to bound Rint

T,ij :

Rint
T,ij =

T∑
t=1

Iti (ℓ(yt, pi)− ℓ(yt, pj))

=
∑
y

T (i, y) (ℓ(y, pi)− ℓ(y, pj))

≤
∑
y

q(i, y)Ti (ℓ(y, pi)− ℓ(y, pj)) +BTi |ρT (pi)− pi|

≤ BTi |ρT (pi)− pi| ,

where in the first inequality, we used ℓ(y, pi)− ℓ(y, pj) ≤ ℓ(y, pi) ≤ B, and in the second inequality we used the fact
that ℓ is a proper loss.
Since internal regret equals Rint

T = maxi,j R
int
T,ij , we have

Rint
T ≤

N∑
i=1

max
j

Rint
T,ij ≤ 2B

N∑
i=0

Ti |ρ(i/N)− pi| ≤ 2B(RT + ϵ).

D.4 Recalibrated forecasts have low regret relative to uncalibrated forecasts

Next, we use the above result to prove that the forecasts recalibrated using the above construction have low regret
relative to the baseline uncalibrated forecasts.

Lemma D.2 (Recalibration preserves accuracy). Let ℓ be a bounded proper loss such that ℓ(yt, p) ≤ ℓ(yt, pj) +Bϵ
whenever ||p−pj || ≤ ϵ. Then the recalibrated pt a.s. have vanishing ℓ-loss regret relative to pFt and we have uniformly:

1

T

T∑
t=1

ℓ(yt, pt)−
1

T

T∑
t=1

ℓ(yt, p
F
t ) <

B

ϵ

M∑
j=1

Tj

T
RTj

+ 3Bϵ. (23)
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Proof. By the previous lemma, we know that an algorithm whose calibration error is bounded by RT = o(1) also
minimizes internal regret at a rate of 2BRT , and thus external regret at a rate of 2BRT /ϵ.
Next, let us use Ij,t to indicate that F cal

j was called at time t. We establish our main claim as follows:

1

T

T∑
t=1

ℓ(yt, pt)−
1

T

T∑
t=1

ℓ(yt, p
F
t )

=
1

T

T∑
t=1

 M∑
j=1

(
ℓ(yt, pt)− ℓ(yt, p

F
t )
)

Ij,t


<

1

T

T∑
t=1

 M∑
j=1

(ℓ(yt, pt)− ℓ(yt, pj)) Ij,t +Bϵ


≤ 1

ϵ
B

M∑
j=1

Tj

T
RTj

+ 3Bϵ,

where RTj
is a bound on the calibration error of F cal

j after Tj plays.

In the first two inequality, we use our assumption on the loss ℓ. The last inequality follows because F cal
j minimizes

external regret w.r.t. the constant action pj at a rate of BRTj
/ϵ.

D.5 Proving that calibration holds under any norm

We want to also give a proof that the recalibration construction described above yields calibrated forecasts.
Lemma D.3. If each F cal

j is (ϵ, ℓp)-calibrated, then the combined algorithm is also (ϵ, ℓp)-calibrated and the following
bound holds uniformly over T :

CT ≤
M∑
j=1

Tj

T
RTj

+ ϵ. (24)

Proof. Let M = |V |. Let I(j)i =
∑T

t=1 I(j)t,i where I(j)t,i = I{pt = pj ∩ pFt = pj} and note that
∑T

t=1 It,i =
∑M

j=1 I(j)i .

Let also ρ
(j)
T (pi) =

∑T
t=1 I(j)t,i yt∑T
t=1 I(j)t,i

. We may write

CT,i =

∑T
t=1 It,i
T

|ρT (pi)− pi| =
∑M

j=1 I(j)i

T

∣∣∣∣∣∣
M∑
j=1

∑T
t=1 I(j)t,i yt∑M
j=1 I(j)i

− pi

∣∣∣∣∣∣
=

∑M
j=1 I(j)i

T

∣∣∣∣∣∣
M∑
j=1

I(j)i ρ
(j)
T (pi)∑M

j=1 I(j)i

− pi

∣∣∣∣∣∣ ≤
M∑
j=1

I(j)i

T

∣∣∣ρ(j)T (pi)− pi

∣∣∣ = M∑
j=1

Tj

T
C

(j)
T,i,

where C
(j)
T,i =

∣∣∣ρ(j)T (pi)− pi

∣∣∣ ( 1
Tj

∑T
t=1 I(j)t,i

)
and in the last line we used Jensen’s inequality. Plugging in this bound

in the definition of CT , we find that

CT =

N∑
i=1

CT,i ≤
M∑
j=1

N∑
i=1

Tj

T
C

(j)
T,i ≤

M∑
j=1

Tj

T
RTj

+ ϵ,

Since each RTj
→ 0, the full procedure will be ϵ-calibrated.

Recall that RT denotes the rate of convergence of the calibration error CT . For most online calibration subroutines
F cal, RT ≤ f(ϵ)/

√
T for some f(ϵ). In such cases, we can further bound the calibration error in the above lemma as

M∑
j=1

Tj

T
RTj
≤

M∑
j=1

√
Tjf(ϵ)

T
≤ f(ϵ)√

ϵT
.

In the second inequality, we set the Tj to be equal. Thus, our recalibration procedure introduces an overhead of 1√
ϵ

in
the convergence rate of the calibration error CT and of the regret relative to a baseline forecaster in the earlier lemma.
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E Applications: Decision-Making
Next, we complement our results with a formal characterization of some benefits of calibration. Consider a decision-task
where we wish to estimate a value function v : Y ×A×X → R over a set of outcomes Y , actions A, and features X .
Note that the function v could be a loss ℓ(y, a, x) that quantifies the error of an action a ∈ A in a state x ∈ X given
outcome y ∈ Y .
We assume that given x, the agent chooses an action a(x) according to a decision-making process. This could be an
action a(x) = argmina Ey∼H(x)[ℓ(y, a, x)] that minimizes an expected loss according to the probabilities given by the
forecast. The agent then relies on a predictive model H of y to estimate the future values v(y, a, x) for the decision
a(x) :

v(x) = Ey∼H(x)[v(y, a(x), x)]. (25)

We study v(y, a, x) that are monotonically non-increasing or non-decreasing in y. Examples include linear utilities
u(a, x) · y + c(a, x) or their monotone transformations.

Expectations Under Calibrated Models If H was a perfect predictive model, we could estimate expected values of
outcomes perfectly. In practice, inaccurate models can yield imperfect decisions. Surprisingly, our analysis shows that
in many cases, calibration (a much weaker condition that having a perfectly specified model H) is sufficient to correctly
estimate the value of various outcomes.
Surprisingly, our guarantees can be obtained with a weak condition—quantile calibration. Additional requirements are
the non-negativity and monotonicity of v. Our result is a concentration inequality that shows that estimates of v are
unlikely to exceed the true v on average [48].
Theorem E.1. Let M be a quantile calibrated model as in and let v(y, a, x) be a monotonic value function. Then for
any sequence (xt, yt)

T
t=1 and r > 1, we have:

lim
T→∞

1

T

T∑
t=1

I [v(yt, a(xt), xt) ≥ rv(xt))] ≤ 1/r (26)

Proof. Recall that M(x) is a distribution over Y , with a density px, a quantile function Qx, and a cdf Fx. Note that for
any x and s ∈ (0, 1) and y′ ≤ F−1

x (1− s) we have:

v(x) =

∫
v(x, y, a(x))qx(y)dy

≥
∫
y≥y′

v(x, y, a(x))qx(y)dy

≥ v(x, y′, a(x))

∫
y≥y′

qx(y)dy

≥ sv(x, y′, a(x))

The above logic implies that whenever v(x) ≤ sv(x, y, a), we have y ≥ F−1
x (1− s) or Fx(y) ≥ (1− s). Thus, we

have for all t,
I{v(xt) ≤ sv(xt, yt, at)} ≤ I{Fxt(yt) ≥ (1− s)}.

Therefore, we can write

1

T

T∑
t=1

I{v(xt) ≤ sv(xt, yt, at)} ≤
1

T

T∑
t=1

I{Fxt
(yt) ≥ (1− s)} = s+ o(T ),

where the last equality follows because M is calibrated. Therefore, the claim holds in the limit as T →∞ for r = 1/s.
The argument is similar if v is monotonically non-increasing. In that case, we can show that whenever y′ > F−1

x (s),
we have v(x) ≥ sv(x, y′, a(x)). Thus, whenever v(x) ≤ sv(x, y, a), we have y ≤ F−1

x (s) or Fx(y) ≤ s. Because, Fx

is calibrated, we again have that

1

T

T∑
t=1

I{v(xt) ≤ sv(xt, yt, at)} ≤
T∑

t=1

I{Fxt
(yt) < s} = s+ o(T ),

and the claim holds with r = 1/s.

Note that this statement represents an extension of Markov inequality. Note also that this implies the same result for a
distribution calibrated model, since distribution calibration implies quantile calibration.
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F Additional Experimental Details

Experiments were run on CPU on a MacBook Pro with an M2 chip and 64 GB of memory. The results in our experiments
were generated using 6 hours of compute.

G Broader Impacts

Uncertainty estimates, and particularly those that hold under weak assumptions, support the responsible and safe
deployment of machine learning systems. However, it is important to note that the uncertainty guarantees provided in
this work hold in the long run, and do not apply to individual outcomes.
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