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ABSTRACT: Oil residues are found on Gulf of Mexico beaches due to the
Deepwater Horizon (DWH) incident, alongside oil residues from natural seepage
and other anthropogenic inputs. To identify the origin of oil residues found on
beaches, especially after a spill, it is critical to have techniques that can be used in
the field, can provide rapid identification, and can be used easily by response
workers. Here we present the utility of a hand-held X-ray fluorescence (XRF)
spectrometer to rapidly identify the origin of oil residues. When XRF data were
coupled with a machine learning model, DWH samples could be distinguished
from not-DWH samples with 95% accuracy. This approach enables the analysis of
bulk samples without sample preparation, paving the way for utilizing XRF in the
field for immediate oil residue source identification.

■ INTRODUCTION
The presence of oil residues in the marine environment is of
both environmental and public concern.1,2 Local communities,
especially those with fishing-based or recreation-based
economies, can experience significant financial losses as a
result of oil contamination of public beaches, particularly in the
aftermath of an oil spill.3 Oil residues in the marine
environment, however, can originate from a variety of different
sources, including anthropogenic inputs, such as spills, as well
as natural oil seeps.4 Determining the origin of oil residues on
beaches is fundamental to understanding the persistence of
different types of oil in the coastal environment. Mixed inputs
of oil from natural and anthropogenic origins are well-known,
particularly in the Gulf of Mexico (GoM) following the
Deepwater Horizon (DWH) incident,5,6 as it is an area that has
natural oil seeps7,8 as well as anthropogenic inputs of oil.9 It is
also important to monitor persistent oil residues over time as
they contain, among other chemicals, polycyclic aromatic
hydrocarbons (PAHs), which can be toxic to humans and
ecosystems.10 Monitoring the persistence of a specific type of
oil in the marine environment in the field can be challenging,
although is a tractable problem once samples are collected and
analyzed in the lab.
To determine the origin of oil in the marine environment,

the chemical composition of oil, specifically the character-
ization of oil-derived hydrocarbon compounds known as
biomarkers, is typically measured.11,12 Well-defined methods of
oil and biomarker analysis occur in specialized laboratories
employing one-dimensional gas chromatography (GC)
coupled to flame ionization detection (FID) or mass
spectrometry (MS) as well as comprehensive two-dimensional

gas chromatography (GC×GC) coupled to either FID or time-
of-flight MS (TOF-MS).13 Bulk oil analysis methods such as
Fourier transform infrared (FTIR) spectroscopy and thin layer
chromatography with flame ionization detection (TLC-FID)
are also employed to more generally characterize oil.5,9,14 The
aforementioned methods are robust in their applications but
are both time and labor intensive, use harmful solvents, are
destructive to the samples analyzed, and require the use of a
specialized laboratory and a highly trained researcher. In
contrast to lab-based approaches, field protocols based on
physical and visual characteristics of oil residues have been
developed.15 While useful, these protocols rely on human
interpretation and are not definitive in terms of distinguishing
different inputs of oil. In this study, we sought to develop a
rapid and portable approach that could be employed in the
field to determine the origin of oil in different samples. A hand-
held X-ray fluorescence (XRF) spectrometer was used to
analyze samples for their elemental content.16 A key benefit of
this method is that it does not require time-consuming sample
preparation steps, thus making it possible to analyze a large
number of samples in a relatively short period of time. The
method takes only minutes to complete from start to finish,
whereas other analysis techniques can take hours. A second
benefit is that this process is nondestructive, which allows for
the preservation of samples.17

The XRF approach detailed here focuses on the analysis of
elemental concentrations present in oil as a way to distinguish
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different inputs of oil. Specific metals, primarily nickel and
vanadium, have previously been used to characterize oils from
different sources.18−20 This approach is successful in part
because nickel and vanadium are two of the most abundant
elements in oil. However, a variety of other metals are also
consistently found in oil samples,19 but their utility with
respect to determining the source of the oil has not been
extensively explored. Typically, a broad range of metals beyond
nickel and vanadium are examined with the intent of
understanding the toxicity of oil as well as how the
concentrations of these elements may be altered as oil is
weathered in the environment.21,22 In studies related to the
DWH incident, for example, chromium, aluminum, iron,
magnesium, nickel, lead, thallium, vanadium, cobalt, zinc,
copper, and mercury have all been examined.21,23 Other
studies have also measured the abundance of calcium, titanium,
and strontium in crude oils.24,25

For the development of this XRF analytical approach,
samples that had been collected from GoM beaches in Florida,
Alabama, Mississippi, and Louisiana between 2012 and 2017
were utilized. Samples were analyzed in the laboratory to
develop the XRF approach, but because the XRF spectrometer
used is a hand-held system, the same approach could be
utilized directly in the field. The samples analyzed included oil
residues that originated from the 2010 DWH incident as well
as oil from natural seeps, other anthropogenic spills, road
asphalt, and samples that visually resembled oil but did not
contain oil-derived hydrocarbons. Subsequent analysis of the
element content data by machine learning approaches was then
used to distinguish DWH oil residues from other inputs of oil
and non-oil samples. The machine learning approaches
employed included a rule-based classifier, which uses IF-
THEN rules for its predictions, as well as a decision tree
classifier, which is structurally organized as a flowchart-like
structure. These two approaches were chosen on the basis of
their interpretability, which, unlike traditional statistical
approaches, produce outcomes in the form of element content
data that can be directly deployed in the field for the
interpretation of environmental samples.

■ EXPERIMENTAL SECTION

Sample Collection. Between June 2012 and June 2017,
119 individual oil residue samples were collected from GoM
beaches as previously described.9,14 This sample set includes
oil patties originating from the DWH incident (62 samples),
tar residues originating from natural seepage offshore (27
samples), unknown oil residues (13 samples, six of which also
contain sand), and non-oil samples that have the appearance of
oil but do not contain any oil residues (17 samples). All
samples were collected in precombusted glass jars (450 °C, 8

h), shipped to Haverford College, and kept frozen until further
analysis. The classification of these samples as DWH oil
patties, tar residues, unknown oil residues, and non-oil samples
was previously described (see refs 9 and 14).

X-ray Fluorescence of Samples. XRF spectroscopy was
performed using an Oxford Instruments X-MET 7500 X-ray
fluorescence spectrometer, a portable, hand-held device with
detection limits on the scale of 1 ppm.16 No extraction steps
were performed on the samples prior to analysis. The
minimum size of samples analyzed was approximately 2 cm
× 3 cm × 1 cm. To consistently analyze the interior of each
sample, sand patties and oil residues were sliced in half with a
solvent-rinsed razor blade prior to analysis. Samples were
placed on a Mylar circular window film (6 μm thick, 64 mm
diameter) on the XRF X-ray detection site. The XRF standard
“soil” method was used, with a 60 s detection time.26 To
capture the variation within individual samples, five data points
were taken per sample, each the average of three measure-
ments. Each of the five data points was taken sequentially from
a different location on the inside of the sample, with a distance
of approximately 2−5 mm between each data point. Element
concentration data were therefore collected in triplicate for a
total of 595 subsamples, representing 119 individual samples,
each measured in five places. To evaluate the heterogeneity of
the samples further, eight samples representing different GoM
coastal beaches were solvent-extracted according to previously
described methods (see ref 14), so that the resulting oil residue
extracts and remaining unextractable materials (primarily sand
and shells) could be analyzed separately from one another.14

The extracts and unextracted residues were then dried
overnight at room temperature prior to XRF analysis.

Machine Learning Analysis. The 595 XRF samples from
119 unique samples were used to train interpretable machine
learning models to infer the presence or absence of DWH oil
from XRF data. The element concentration data have been
deposited with Figshare (DOI 10.6084/m9.figshare.7272644).
All element concentrations were used as trainable features,
with a binary class variable (origin of oil is DWH or not-
DWH). The training set used to construct the model was
comprised of a random selection of 66% of the samples (393
subsamples, 79 unique samples). The remaining 33% of the
samples were held out as a test set (202 subsamples, 40 unique
samples) so that the accuracy of the model with respect to
unseen data could be determined. Subsamples from the same
patty were grouped together into the training set or test set to
ensure the model did not have prior exposure to samples
similar to those in the test set. The PART rule-based
classifier27 and C4.5 decision tree classifier28,29 were used for
the binary classification task of determining if a sample
contained oil residues from the DWH oil spill.

Table 1. Rules and the Number of Each Sample Type Classified as either DWH or Non-DWH Oil by Each of These Rules

rulea classification no. of DWH oil patties no. of tar residues no. of unknown oil residues no. of non-oil samplesb

rule 1 if Hg > 7 and Cu < 19c not DWH 135 45 47
rule 2 if Ca > 2869, Zn < 31, and

K < 245
DWH 276 1

rule 3 if Sr < 189 and Ti < 729 not DWH 20 31
rule 4 if Cu < 19 and Fe < 15367 DWH 29
rule 5 else not DWH 4 7

aIndividual rules have multiple clauses, and therefore, a single clause may be repeated between rules without redundancy or conflict. bNon-oil
samples include samples that do not contain oil residues and are instead comprised of mud, peat, or wood. cNumbers represent concentrations of
specific elements in ppm.
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■ RESULTS AND DISCUSSION

Elements Detected by X-ray Fluorescence. A total of
25 elements were detected across the range of samples. In
order of typical average abundance across all samples collected,
the elements are calcium (Ca), iron (Fe), potassium (K),
titanium (Ti), zirconium (Zr), strontium (Sr), manganese
(Mn), vanadium (V), molybdenum (Mo), thorium (Th),
barium (Ba), rubidium (Rb), nickel (Ni), cadmium (Cd), zinc
(Zn), copper (Cu), lead (Pb), cobalt (Co), chromium (Cr),
mercury (Hg), thallium (Tl), antimony (Sb), tantalum (Ta),
selenium (Se), and gold (Au). The minimum, median,
maximum, and first and third quartile concentrations of these
elements for each sample type are provided (Table S1) along
with the concentrations of all 25 elements for each sample
category (Figures S1−S4). Variations in element concen-
trations are observed within and between the extracted oil
residues and sand matrix when they are separated from one
another (Table S5).
The Element Content Can Predict the Presence of

DWH Oil. The rule-based and decision tree models yielded
96% and 95% classification accuracy, respectively (detailed in
Figure S6). The two models made decisions based on very
similar features, primarily considering Hg, Cu, Ca, Zn, K, Sr, Zr,
and Fe (Table 1). The concentrations of these eight elements
for all DWH and not-DWH samples are shown in Figure 1.

Model Interpretation. Analysis of the model provides
insight into the sample composition that enables the
identification at 95−96% accuracy. Mixtures with sand play a
key role in the identification parameters. For example, from the
XRF analysis, we find that mercury is present in oil but is not
sand (Figure S5), but DWH samples are identified by lower
mercury contents (rule 1) because the presence of sand dilutes
the mercury concentration present in the oil. Calcium is found
at high levels in both extracted sand and extracted DWH oil
(Figure S5), allowing DWH samples to be distinguished from
all other samples (Table S1) that contain neither sand nor

DWH oil. Compared to the non-oil samples, the DWH patties
have lower concentrations of Sr, Ti, and Cu (Table S1),
allowing some of the samples in these categories to be
separated from one another.

Implications. This study successfully utilizes bulk
elemental analysis as determined by XRF coupled with
machine learning analysis with decision tree and rule-based
models to distinguish DWH from not-DWH oil residues with
95−96% accuracy. Each of the models trained can be easily
simulated by humans and requires <10 basic comparisons to
evaluate. These results allow for the potential of new samples
to be directly analyzed in the field with a hand-held XRF
spectrometer, with confirmation of oil origin using rules from
the machine learning algorithm taking only a few minutes for
each sample analyzed. For applications requiring rapid sample
identification in the field, the method developed could provide
direct and clear information to first responders and researchers,
without the need for expensive, time-consuming, and environ-
mentally unfriendly methods.
It is important to recognize that the rule-based models

described here apply specifically to oil residues and non-oil
samples that are collected from GoM beaches. To explore the
broad applicability of this research, more samples containing
different oil residues from a variety of environments would
need to be examined. Other important considerations include
developing a better understanding of the role of the oil-derived
elements versus non-oil-derived elements in the model. The
rules in the model described in this study include a mixture of
elements originating from both the oil residues and other non-
oil inputs, including those that are natural (e.g., sand, mud, and
peat) and those that are anthropogenic (e.g., storage vessels
and industrial inputs). To ground truth this approach and
explore its broad applicability, chemical analysis of different oil
samples of different types and from different reservoirs would
be required with subsequent statistical analysis to determine
whether there is significant variation in the elemental
composition of oil alone. If the elemental compositions of
different oils are statistically distinguishable from one another,
then this approach could likely be widely applied to different
oils spilled in different locations and combined with a variety of
environmental matrices. While outside of the context of this
current GoM-specific study, these analyses would be an
important next step. Ultimately, testing this approach on
samples collected from other locations contaminated with
different oil residues will confirm the broader utility of this
protocol and its potential to introduce a novel rapid analysis
technique to the standard methods of oil spill identification.
This method could support more direct and efficient
communication between researchers and spill responders and
increase the accessibility of information for the general public.
The overall goal is to develop this method to a point where it
can be adapted and utilized by other researchers and applied to
oil residues analyses at any site where oil contamination is
found.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.es-
tlett.8b00589.

Additional experimental data of the elemental content
for each sample, including data for the separate analysis

Figure 1. Concentrations of the eight elements used in the rule-based
model shown for all samples. Black circles represent those classified as
not-DWH samples, and red crosses represent those classified as DWH
samples. Concentrations are on a logarithmic scale, and zero values
are not shown.
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of extracted oil and sand, and the decision tree
developed for sample classification (PDF)
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